| 2n+1 | ||
lim | =0 | |
| 2n2−1 |
| 2n+1 | ||
| | − 0| < ε | |
| 2n2−1 |
| 2n+1 | |
< ε | |
| 2n2−1 |
| 2 − 2√2ε2 + 2ε + 1 | 1 − √2ε2 + 2ε + 1 | |||
n1 = | = | |||
| 4ε | 2ε |
| 1 + √2ε2 + 2ε + 1 | ||
n2 = | ||
| 2ε |
| 1 − √2ε2 + 2ε + 1 | 1 + √2ε2 + 2ε + 1 | |||
n∊(−∞, | ) ∪ ( | , +∞), n≥1, n∊ℕ | ||
| 2ε | 2ε |
| 1 + √2ε2 + 2ε + 1 | ||
n ∊ ( | , +∞), n∊ℕ | |
| 2ε |
| 1 + √2ε2 + 2ε + 1 | ||
Niech n0 = [ | ] + 1, wtedy: | |
| 2ε |
| 2n+1 | ||
∀n ≥ n0 | | − 0| < ε, czyli | |
| 2n2−1 |
| 2n+1 | ||
limn→∞ | = 0, c.k.d. | |
| 2n2−1 |